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The economical definition of confinement of quarks in

QCD is the ’area law’ for the Wilson loop. The gauge

invariant Wilson loop is

W (C) = Tr P e−ig
∮
dxµ Aa

µ(x)ta, (1)

where P denotes the path ordering and ta are the gener-
ators of the gauge group.

We shall consider SU(2) Yang-Mills theory and choose

the Savvidy classical backgroound

Āa
0 = 0 ; Āa

i = δa3 (−Hy
2
,
Hx

2
, 0). (2)

This choice solves the classical equation of motion D̄ab
µ F̄

µνb =

0, where D̄ab
µ = ∂µδ

ab+gεacbĀc
µ. The classical background

corresponds to constant chromomagnetic field in the third
color direction F̄ 3

12 = H and this comes from the deriva-
tive terms in F̄ a

µν = ∂µĀ
a
ν − ∂νĀ

a
µ + gεabcĀb

µĀ
c
ν. For this

reason, the Savvidy ansatz is called ’Abelian like’. So the
classical background is esssentially Abelian-like, taking
values in the Cartan subgroup of SU(2).
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The use of Abelian field strength can be understood

from the idea of ’t Hooft who proposed ’Abelian Pro-

jection’. This is a particular gauge fixing, breaking the

gauge group SU(N) to the maximal torus subgroupH =

U(1)N−1. For SU(2), H = U(1). This is realized in a

specific gauge called the ’Maximal Abelian Gauge’. In

the continuum formulation, this has the form

(∂µδ
ab + gεa3bĀ3

µ)Ā
b
µ = 0, (3)

and the classical Savvidy background satisfies this. Nu-

merical simulations on the lattice have found that the

Abelian projected Wilson loop defined by A3
µ exhibits the

’area law’ (T.Suzuki and I.Yotsuyanagi, Phys.Rev. D42

(1990) 4257; K-I.Kondo and A.Shibata, hep-th/0801.4203).

So (1) in this gauge (3)

W (c) = 〈e−ig
∮
dxµ A3

µ〉,
= 〈e−i

g
2

∫
S dS

µνF 3
µν〉,

= 〈e−i
g
2H× area〉, (4)

where in (4),H should correspond to the minimum value
of the energy density.

The classical energy density for the background (2),

in the Euclidean formulation, is E = H2

2 . This energy
density has a minimum E = 0 at H = 0 and so W (C)
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in (4) does not give the area law. In order to realize the
area law from (4), the minimum energy density should
correspond to H 6= 0.

Savvidy has studied the quantum 1-loop effective en-

ergy density which has a minimum lower than the above

classical minimum and for which H 6= 0.

However, Nielsen and Olesen pointed out that the 1-

loop effective energy density in the background (2) had

an imaginary part, stemming from the lowest Landau

level and so the vacuum (ground state) of such a model

is unstable. Various attempts were made to circumvent

this sensitive issue which inhibited the progress.

All these calculations were performed in the Gaussian
(keeping only the terms quadratic in quantum fluctua-
tions) approximation.

4



We have reexamined this important issue by retain-

ing all the terms in the quantum fluctuations. Besides

quadratic terms, there are terms cubic and quartic in

quantum fluctuations. Briefly, the Euclidean functional

integral for SU(2) pure Yang-Mills theory

Z =
∫
[dAa

µ] e
S,

S =
∫
d4x{−1

4
F a
µνF

a
µν},

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν. (5)

The action above is expanded around the classical back-

ground Āa
µ in (2) as

Aa
µ = Āa

µ + aaµ, (6)

and the quantum fluctuations aaµ are taken to satisfy the

’background gauge’

D̄ab
µ a

b
µ = 0. (7)

This gauge choice is important. First of all, there is no

Gribov ambiguity in using this background gauge.
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It has been shown by Amati and Rouet (Phys.Lett.

73B 1978, 39) that the multiplicity of classical solutions

satisfying the gauge condition is an irrelevant issue for

quantizing non-Abelian Yang-Mills theories in the back-

ground gauge and an unambiguous generating functional

is now possible. The correct treatment of the zero modes

of the 1-loop operator gives the background gauge rela-

tive to the classical solution.

Further details can be seen in R.Parthasarathy, Lett.

Math. Phys. 15 (1988) 179; Pramana 32 (1989) 563.

Second, with the background gauge (7), and using (3),
we have D̄ab

µ (Āb
µ + abµ) = 0 and so the ’Maximal Abelian

Gauge’ or Abelian projection is realized for the full gauge
field Āa

µ + aaµ.

6



Now using (6) and (7) in (5), the unambiguous Eu-

clidean generating functional Z becomes,

Z =
∫
[daaµ]e

S′, (8)

with

S ′ =
∫
d4x{−1

4
F̄ a
µνF̄

a
µν +

1

2
aaµΘ

ac
µνa

c
ν + gεacd(D̄ae

ν a
e
µ)a

c
µa

d
ν

− g2

4
((aaµa

a
µ)

2 − aaµa
c
µa

a
νa

c
ν)} − `og det(−D̄ab

µ D̄
bc
µ ),(9)

where

Θac
µν = (D̄ab

λ D̄
bc
λ )δµν + 2gεaecF̄ e

µν. (10)

In arriving at (9), we have introduced the gauge fixing
and the Faddeev-Popov ghost Lagrangian for the back-
ground gauge (7) and integrated the ghost fields, resulting
in the last term in (9). The expansion in (9) is exact. The
purpose of writing S ′ in the form above is to isolate the
stable and unstable modes of Θac

µν.
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For the Savvidy background, Θac
44 = Θac

33 = D̄ab
λ D̄

bc
λ

so that their contributions to Γ cancel the ghost con-

tribution. Further the non-vanishing Θ are Θijac for

i, j = 1, 2. The eigenmodes and eigenvalues are:

a3
1 ± ia3

2 : k1
2 + k2

2 + k3
2 + k4

2 (plane waves),

(a1
1 + ia1

2)− i(a2
1 + ia2

2) : (2n + 1)gH + 2gH + k2
3 + k2

4, (stable)

(a1
1 − ia1

2) + i(a2
1 − ia2

2) : (2n + 1)gH + 2gH + k2
3 + k2

4, (stable)

(a1
1 + ia1

2) + i(a2
1 + ia2

2) : (2n + 1)gH − 2gH + k2
3 + k2

4, (unstable)

(a1
1 − ia1

2)− i(a2
1 − ia2

2) : (2n + 1)gH − 2gH + k2
3 + k2

4, (unstable).

The last two eigenvalues become negative when n =
0 and for low momenta. As we have logarithm of the
eigenvalues, negative values make it imaginary and hence
the effective energy density becomes complex indicating
vacuum instability. This in the Gaussian approximation.

The contribution from the stable modes are found to

be

10g2H2

96π2 {`og(gH
µ2 ) + C}, (11)

where C is a real (infinite) constant and µ2 is a dimen-
sioful constant introduced to render the argument of the
logarithm dimensionless.
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For the unstable modes, we considered the full action

in (9). The unstable modes involve the Lorentz indices 1

and 2 and the SU(2) indices 1 and 2, because the classical

background (2) is in the third color direction and so the

cubic term in (9), namely, εacd(D̄ae
ν a

e
µ)a

c
µa

d
ν vanishes. The

quartic term in (9) for the unstable modes is found to be
1
8(|au|

2)2 where au is the unstable mode. The functional

integral Z for the unstable modes is evaluated and from

this the finite part of the unstable mode contribution to

the energy density is found to be

g2H2

8π2 `og(
gH
µ2 )− g2H2

4π2 `ogI, (12)

where

I =
∫
dc′ e

−{c′2(k′3
2
+k′4

2−1)+ g2

256π2 c
′4}
. (13)

The integral I is convergent irrespective of whether

k′3
2 + k′4

2 is < or > 1. Further I is real, finite and in-

dependent of H . Adding (12) to (11) and including the

classical energy density, the effective energy density is

found to be

E =
H2

2
+

11g2H2

48π2
{`og(gH

µ2
) + C ′}. (14)
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The real constantC ′ is then fixed by Coleman-Weinberg

normalization ∂
∂H2E|gH=µ2 = 1

2 as −1
2. Thus the effective

energy density for SU(2) Yang-Mills theory in Savvidy

background becomes

E =
H2

2
+

11g2H2

48π2
{`og(gH

µ2
)− 1

2
}. (15)

This is real. The above result is genuine non-Abelian

gauge theory effect.

Quarks (fermions) can be added by minimally coupling
them with the background (2) and functionally integrat-
ing ψ and ψ̄ in Z. The only change is the replacement
of 11 in (15) by (11 − Nf) for Nf quark flavors. The

prefactor
11−Nf

48π2 can be obtained from group theory con-
siderations. Extending to SU(3), this factor becomes
33−2Nf

96π2 .
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In contrast to the classical energy density, the effective

energy density in (15) has a minimum at non-zero H .

The minimum occurs when

H =
µ2

g
e
−24π2

11g2 , (16)

with 11 appropriately replaced when quarks are included.

Thus vacuum expectation value H (corresponding to

the minimum of E) is not zero which gives the Wilson

loop the ’area law’ and hence confinement. The minimum

energy density is

Emin = −11g2H2

96π2
, (17)

which is lower than the classical minimum. This is the
energy of the vacuum in the pure SU(2) Yang-Mills the-
ory.

The result that the minimum of the energy density oc-

curs when H 6= 0 (17) and F̄ 3
12 = H , imply that the

vacuum expectation value 〈F̄ 3
12F̄

3
12〉 6= 0. This indicates

that 〈g2F a
µνF

a
µν〉 6= 0, the occurence of ’gluon conden-

sate’. In this case

〈g2F a
µνF

a
µν〉 = 2g2H2

min = 2µ4 e
−24π2

11g2 . (18)

11



Instead of using the strong coupling g which runs,

we use the result from the Charmonium decay analysis,

〈g2F a
µνF

a
µν〉 ∼ 0.5GeV 4. Then, gH ∼ 0.5GeV 2. With

this estimate

W (C) ∼ e
gH
2 area = eσ area, (19)

where σ = gH
2 = 0.25GeV 2. It is well known that the

’area law’ corresponds to a linear potential and in the
leading order V = σR where R is the separation of static
quark and anti-quark.

For a linear potential V = kr, the non-relativistic
variational calculations give the cc̄ bound states for k =
0.272GeV 2 which agrees with our estimate of σ as 0.25GeV 2.

Thus, the stable vacuum in the chromomagnetic back-
ground is very much indicative of confinement, gives in
the leading order the linear potential whose parameter k
is satisfactorily obtained.
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Finite Temperature Studies

In the studies of the Savvidy vacuum at finite temper-
ature in the Gaussian Approximation, the effective en-
ergy density involved a temperature dependent imaginary
part. We have extended our zero-temperature studies (in-
cluding the cubic and quartic terms) to finite temperature
with chemical potential.

A chemical potential for massless non-Abelian bosons
can be introduced (Anishetty, 1984), by observing that
there are conserved color charges Qa =

∫
d3xja0 ; jaµ =

fabcAb
νF

c
νµ. For SU(2),one choosesQ3. The grand canon-

ical partition function will now have µQ3 in the hamil-
tonian. This leads to the result of using Aa

0 = −iµδa3.
This is not possible for Abelian theories.

The role of chemical potential as a constant term in

Aa
0 is similar to the use of Polyakov loop specified by a

constant Aa
0 field in the third color direction. Now the

Savvidy background becomes

Āa
µ = δa3{iµ

g
,−Hy

2
,
Hx

2
, 0}, (20)

which gives F̄ 3
12 = H which solves the classical equation

of motion.
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The background covariant derivative (Euclidean) now

is

D̄ab
λ = ∂λδ

ab + gεa3bĀ3
λ + µεa3bvλ, (21)

where vλ = (1, 0, 0, 0).

The inclusion of the cubic and quartic terms makes the

calculations involved. The result is a real effective energy

density which including the zero temperature contribu-

tion is

E =
H2

2
+

11(gH)2

48π2
(`og(

gH

Λ2
)− 1

2
) +

π2

45β4

+
(gH)

3
2

βπ2

∞∑
`=1

cos(µβ`)

`
{−π

2
Y1(β`

√
gH) +K1(β`

√
gH)

+ 2
∞∑
n=1

√
2n + 1K1(

√
2n + 1β`

√
gH)}, (22)

where Y1, K1 are modified Bessel functions. Setting β =
a√
gH

and µ = b
√
gH , the temperature dependence is

written as

ET
(gH)2

=
π2

45a4
+

1

π2a

∞∑
`=1

cos(ab`)

`
{−π

2
Y1(a`) +K1(a`)

+ 2
∞∑
n=1

√
2n + 1K1(a`

√
2n + 1)}. (23)
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We have plotted ET
(gH)2

with T in units of
√
gH . b

involves the chemical potential. For b = 0, zero chemical
potential, the variation is smooth. At high temperatures,
the behaviour is like that of non-interacting relativistic
gas.

For b = 2, 3 the variation shows a minimum and then
smooth rise. A non-zero chemical potential triggers de-
confinement phase transition.

Deconfinement occurs for b = 1 around T/
√
gH ∼

0.4 and for b = 2 around T/
√
gH ∼ 0.7. We have

identified the string tension σ as gH
2 and so our results

give for the deconfining temperature T√
σ ∼ 0.5656 for

b = 1 and 0.9899 for b = 2. It is interesting to compare
with the lattice studies. For SU(2), Lucini, M.Teper and
Wenger (hep-lat/0307017; 0502003) find T√

σ ∼ 0.709, the

agreement is satisfactory for 1 > b < 2. As the chemical
potential µ = b

√
gH , using gH = 0.5 GeV 2, the lowest

value for the chemical potential triggering deconfinement
is 0.7 GeV < µ < 1.41 GeV .
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The details of the calculations presented are in

D.Kay, A.Kumar and R.Parthasarathy, Mod.Phys.Lett.
A20 (2005) 1655;
R.Parthasarathy and A.Kumar, Phys.Rev. D75 (2007)
0805007.
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